
■ JJL ■    Defence Research and    Recherche et developpement 
I ^r m    Development Canada      pour la defense Canada 

r£ m> DEFENCE I  ^j   jp DEFENSE 

The Rapid Evaluation of Mean 
Concentration Fields in Lagrangian 
Stochastic Modelling Using a Density 
Kernel Estimator 

Shao, Y. and Yee. E. 
Defence R&D Canada - Suffield 

DISTRIBUTION STATEMENT A 
Approved for Public Release 

Distribution Unlimited 

Technical Report 

DRDC Suffield TR 2004-186 

October 2004 

20050112 102 
Canada 



The Rapid Evaluation of Mean Concentration 
Fields in Lagrangian Stochastic Modelling 
Using a Density Kernel Estimator 

Shao, Y. and Yee. E. 
Defence R&D Canada - Suffield 

Defence R&D Canada - Suffield 
Technical Report 

DRDC Suffield TR 2004-186 

October 2004 



Author 

Jj^j^tka-ö 

Approved by 

;^*"*«-        Dr J. Lavigne 
Head, Chemical and Biological Section 

R. Bide 
Chair, DRDC Suffield DRP 

Her Majesty the Queen as represented by the Minister of National Defence, 2004 

Sa majeste la reine, represented par le ministre de la Defense nationale, 2004 



Abstract 

Lagrangian Stochastic (LS) particle models have proven to be a useful computational tool for the 
description and prediction of dispersion of pollutant releases in complex meteorological situations 
(e.g., space- and time-varying situations pertaining to complex flow and turbulence). However, 
simulating the emitted pollutant by following the trajectories of many "marked" fluid elements 
released from the source distribution brings up the difficulty of the correct estimation of the mean 
concentration of the dispersing pollutant from the particle trajectory information. Recently, the 
density kernel estimation method has been proposed and applied successfully to estimate mean 
concentrations from Lagrangian Stochastic particle models. However, the computational effort 
needed by this method increases as N1 (assuming the number of receptor locations Nr at which the 
concentration is required is comparable to the number of fluid particles Np used in the trajectory 
simulation, so Nr ~ Np ~ N) and, in consequence, the method has not been widely used because of 
the significant computer resources required. Here, we describe a novel algorithm for calculating 
the kernel estimate of the mean concentration field whose computational complexity scales only as 
N. The technique uses a tesselation (subdivision) of space in cubic cells of side length h (where h 
is the bandwidth of the kernel function), and then associates a linked-list data structure with each 
cell that is used as a bookkeeping device to keep track of the "marked" fluid particles in that cell. 
The fast approach developed here has been verified by comparing results with the direct 
implementation of the kernel estimator and with the conventional box-counting estimator for the 
mean concentration field. 

Resume 

On a prouve que les modeles de particules langrangiens stochastiques (LS) sont des outils utiles de 
calcul pour decrire et predire la dispersion des emissions de polluants dans des situations 
meteorologiques complexes (par ex. : des situations dans l'espace et le temps qui varient selon des 
flux et des turbulences complexes). Simuler le polluant emis en suivant les trajectoires de 
beaucoup d'elements de fluides « marques » qui ont ete emis ä la repartition des sources, 
augmente cependant la difficulte d'estimer correctement la concentration moyenne du polluant 
disperse, ä partir de Pinformation sur la trajectoire de la particule. La methode d'estimation ä 
partir du noyau de densite a ete recemment proposee et appliquee avec succes pour estimer les 
concentrations moyennes des modeles de particules langrangiens stochastiques. Cependant, 
1'effort de calcul requis par cette methode augmente par un facteur N2 (dans Phypothese oü le 
nombre de lieux recepteurs Nr t auxquels la concentration est requise est comparable au nombre de 
particules de fluides Nr _ utilise dans la simulation de la trajectoire, tel que Nr» Np ~ N) et, par 
consequent, cette methode, exigeant des ressources informatiques tres importantes, n'a pas ete tres 
utilisee. Nous decrivons ici, un nouvel algorithme qui calcule l'estimation du noyau de.densite du 
champ de la concentration moyenne et dont la complexite des calculs est reduite ä N. La technique 
utilise une tessellation (subdivision) de l'espace en cellules cubiques dont la longueur des cotes h 
(h etant la largeur de bände de la fonction du noyau) et puis associe une structure de donnees en 
chaine avec chaque cellule; cette structure, etant utilisee comme engin de comptabilite, suit les 
particules de fluides « marquees » dans cette cellule. Cette methode rapide, mise au point ici, a ete 
verifiee en comparant des resultats avec Pimplementation directe de Pestimateur de noyau et avec 
Pestimateur classique de « comptage de boites » pour le champ de concentration moyenne. 
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Executive summary 

Background 

There are, quite rightly, growing concerns world-wide about the dangers, both actual and 
potential of the use (release) of chemical and biological warfare (CBW) agents into the 
atmosphere. The increased awareness and importance accorded by the public world-wide and 
their governments to maintain appropriate defences against CBW agents in the environment, 
the prediction of casualties and human performance degradation resulting from such releases, 
and the development of operational procedures and regulations to control, mitigate, and 
monitor the fate of CBW agents in the atmosphere will require mathematical modelling of 
atmospheric dispersion of these agents. This modelling is necessary in order to answer 
political and planning questions such as: what is the extent of the hazard zone corresponding 
to the release of a CBW agent and what is the effect of this release on exposed personnel 
within the hazard region; and what contingency measures would be needed to deal with a 
potential release of a CBW agent. Accurate prediction of the dispersion of contaminants 
released into the complex atmospheric boundary layer is a particularly challenging problem. 
Compared to conventional techniques for the calculation of dispersion (e.g., similarity theory, 
statistical theory, or eddy-diffusivity methods), Lagrangian Stochastic (LS) models of particle 
motions have proven to be a successful and flexible tool in the description and prediction of 
contaminant dispersion in complex meteorological situations (incorporating in a natural 
manner the effects of inhomogeneities, unsteadiness and/or non-Gaussianity in turbulent 
velocity distributions associated with the necessarily complex flow and turbulence 
encountered in the real-world atmosphere). 

The major disadvantage of the LS modelling approach is the need for large computational 
resources to run the model for typical applications in order to obtain statistically meaningful 
solutions of contaminant dispersion and mean concentrations for sources in typical CBW 
agent releases. To facilitate the application of state-of-the-art LS models for CBW agent 
dispersion predictions, we developed a computationally efficient algorithm for mean 
concentration estimation based on the density kernel method that can be used in conjunction 
with LS models of dispersion. 

Principal results 

Lagrangian Stochastic particle models have proven to be a useful computational tool for the 
description and prediction of dispersion of pollutant releases in complex meteorological 
situations (e.g., space- and time-varying situations pertaining to complex flow and 
turbulence). However, simulating the emitted pollutant by following the trajectories of many 
"marked" fluid elements released from the source distribution brings up the difficulty of the 
correct estimation of the mean concentration of the dispersing pollutant from the particle 
trajectory information. Recently, the density kernel estimation method has been proposed and 
applied successfully to estimate mean concentrations from LS particle models. However, the 
computational effort needed by this method increases as TV2 (assuming the number of receptor 
locations Ar

r at which the concentration is required is comparable to the number of fluid 
particles Np used in the trajectory simulation, so Nr~Np~~N) and, in consequence, the method 
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has not been widely used because of the significant computer resources required. Here, we 
describe a novel algorithm for calculating the kernel estimate of the mean concentration field 
whose computational complexity scales only as N. The technique uses a tesselation 
(subdivision) of space in cubic cells of side length h (where h is the bandwidth of the kernel 
function), and then associates a linked-list data structure with each cell that is used as a 
bookkeeping device to keep track of the "marked" fluid particles in that cell. The fast 
approach developed here has been verified by comparing results with the direct 
implementation of the kernel estimator and with the conventional box-counting estimator for 
the mean concentration field. 

Significance of results 

The development and implementation of a fast linked list based algorithm for a density kernel 
estimate of the mean concentration field has been described, allowing the user to calculate a 
set of kernel estimates of concentration at Nr receptor locations in order 0(Nr) work as 
opposed to order 0(N2

r) effort (assuming the typical situation where the number of fluid 
particles Np used in the trajectory-simulation satisfies Np>Nr). The algorithm makes feasible 
the use of LS models on a personal computer for the routine calculation of dispersion 
associated with complex CBW agent release scenarios into the atmosphere. 

Future work 

There are several ways in which the code for the fast linked list based algorithm for the 
density kernel estimator of the mean concentration field can be generalized and/or made more 
efficient. The linked list data structure used here is appropriate for the case where the 
bandwidth of the density kernel associated with each particle is fixed. In principle, the 
bandwidth h need not be constant and for many applications it may be useful to allow a 
variable smoothing length that is dynamically adapted so that the number of neighboring fluid 
particles within the support of a kernel function centered on any particular particle remains 
constant. The generalization of the proposed fast kernel estimator for variable kernel 
bandwidth h will probably require that the linked list data structure used here be replaced by a 
hierarchy tree data structure that can be adopted to suit the needs of a variable bandwidth. In 
the application of the fast kernel estimator, the code can be made even more efficient by pre- 
computing the values of the kernel function for a large number of representative points and 
storing the results in a pre-computed kernel function value look-up table. Finally, it may well 
be worth exploring the parallelization of the code so that it can be executed on computers with 
highly parallel architectures (e.g., Beowulf clusters). 

Shao, Y. and Yee, E. (2004). The Rapid Evaluation of Mean Concentration Fields in Lagrangian 
Stochastic Modelling Using a Density Kernel Estimator. (DRDC Suffield TR 2004-186). 
Defence R&D Canada - Suffield. 
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Sommaire 

Contexte 

II existe, ä juste titre, des inquietudes croissantes au niveau mondial, en ce qui concerne les 
dangers, ä la fois actuels et potentiels, d'utilisation (emission) d'agents chimiques et biologiques 
de guerre (CBW), dans l'atmosphere. Cette conscience accrue et l'importance accordee par le 
public et par les gouvernements, au niveau mondial, le maintien des defenses appropriees contre 
les agents CBW dans l'environnement, la prevision de victimes, la degradation des performances 
humaines resultant de telles emissions et Pelaboration de procedures operationnelles et de 
reglements pour contröler, limiter et surveiller le sort des agents CBW dans 1'atmosphere, 
exigeront la modelisation mathematique de la dispersion de ces agents dans l'atmosphere. Cette 
modelisation est necessaire pour faire face aux problemes politiques et de planification tels que : 
Petendue de la zone dangereuse resultant de remission d'un agent CBW et l'effet d'une teile 
emission sur le personnel qui a ete expose ä Pinterieur de la region dangereuse ; et les mesures 
d'urgence requises pour gerer remission potentielle d'un agent CBW. Predire avec exactitude la 
dispersion de ces contaminants emis dans le couche limite atmospherique est tres problematique. 
Compares aux techniques classiques de calcul de la dispersion (par ex.: theorie de la similitude, 
theorie statistique ou les methodes de diffusivite des remous), les mouvements des modeles de 
particules lagrangiens stochastiques (LS) se sont prouves etre des outils souples qui reussissent ä 
decrire et ä predire la dispersion de contaminants dans des situations meteorologiques complexes 
(incorporant de maniere naturelle les effets d'elements non homogenes, le manque de regularite et 
/ou les distributions non gaussiennes de vitesse limite de regime turbulent associees avec les flux 
et les turbulences complexes qui sont necessairement rencontrees dans la realite de l'atmosphere). 

L'inconvenient principal de cette methode de modelisation LS est que cette derniere necessite des 
ressources tres importantes en puissance de calcul pour que ce modele produise des solutions aux 
applications caracteristiques qui soient statistiquement valables en ce qui concerne la dispersion de 
contaminants et les concentrations moyennes des sources, lors d'emissions caracteristiques 
d'agents CBW. Un algorithme de traitement efficace estimant la concentration moyenne basee sur 
la methode de la densite du noyau a ete developpe pour faciliter P application des ces modeles LS, 
les plus recents de la technique, aux predictions de dispersion d'agents CBW et peuvent etre 
utilises en conjonction avec les modeles LS de dispersion. 

Les resultats principaux 

On a prouve que les modeles de particules langrangiens stochastiques sont des outils utiles de 
calcul pour decrire et predire la dispersion des emissions de polluants dans des situations 
meteorologiques complexes (par ex. : des situations dans Pespace et le temps qui varient selon des 
flux et des turbulences complexes). Simuler le polluant emis en suivant les trajectoires de 
beaucoup d'elements de fluides « marques » qui ont ete emis ä la repartition des sources, 
augmente cependant la difficulte d'estimer correctement la concentration moyenne du polluant 
disperse, ä partir de Pinformation sur la trajectoire de la particule. La methode d'estimation ä 
partir du noyau de densite a ete recemment proposee et äppliquee avec succes pour estimer les 
concentrations moyennes des modeles de particules langrangiens stochastiques. Cependant, 
l'effort de calcul requis par cette methode augmente par un facteur N" (dans Phypothese ou le 
nombre de lieux recepteurs Nr _ auxquels la concentration est requise est comparable au nombre de 
particules de fluides Nr utilise dans la simulation de la trajectoire, tel que Nr ~ Np ~ N) et, par 
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consequent, cette methode, exigeant des ressources informatiques tres importantes, n'a pas ete tres 
utilisee. Nous decrivons id, un nouvel algorithrae qui calcule l'estimation du noyau du champ de 
la concentration moyenne et dont la complexite des calculs est reduite äN, La technique utilise 
une tessellation (subdivision) de I'espace en cellules cubiques dont la longueur des cotes h (h etant 
la largeur de bände de la fonction du noyau) et puis associe une structure de donnees en liste 
chainee avec chaque cellule; cette structure etant utilisee comme engin de comptabilite suivant les 
particules fluides « marquees » dans cette cellule. Cette methode rapide, mise au point ici, a ete 
verifiee en comparant des r£sultats avec l'implementation directe de l'estimateur de noyau et avec 
I'estimateur classique de « comptage de boftes », pour le champ de concentration moyenne. 

La portee des res u I tats 

On decrit le developpement et 1'implementation d'un algorithme a base de donnees en liste 
chainee rapide qui estime le noyau de la densite dans le champ de concentration moyenne, ce qui 
permet ä l'utilisateur de calculer un ensemble d'estimations du noyau de la concentration aux lieux 

recepteurs Nr, d'ordre 0(Nr) du travail contrairement ä l'ordre CXN\ )de 1'effort). (Dans 
I'hypothese d'une situation caracteristique ou le nombre de particules fluides Np utilise dans la 
simulation de la trajectoire correspond ä Np > Nr). L'algorithme rend l'utilisation des modeles LS 
faisable avec un ordinateur personnel pour les calculs routiniers de la dispersion, associes aux 
scenarios complexes d'emissions d'agents CBW, dans 1'atmosphere. 

Les travaux futurs 

II existe plusieurs facons de g6neraliser le code des algorithmes de donnees ä base de liste chainee 
rapide qui vise ä estimer la densite du noyau, dans le champ de concentration moyenne, et / ou de 
rendre ce code plus efficace. La structure des donnees ä base de liste chatnee utilisee ici est 
appropriee dans le cas ou la largeur de bände de la densite du noyau associee ä chaque particule 
est fixe. En principe, la largeur de bände h n'a pas besoin d'etre constante et dans beaucoup 
d'applications, il peut suffire d'allouer une longueur variable souple pouvant dynamiquement 
s'adapter, en sorte que le nombre de particules fluides avoisinantes, ä l'interieur du support de la 
fonction du noyau centree sur une particule donnee, reste constant. La generalisation de 
I'estimateur rapide de noyau qui est propose pour la largeur de bände h variable exigera 
probablement que la structure des donnees a base de liste chainee utilisee ici soit remplacee par 
une structure de donnee, un organigramme hierarchique, pouvant etre adopte pour satisfaire les 
besoins d'une largeur de bände variable. Dans l'application de I'estimateur de noyau rapide, le 
code peut etre rendu encore plus efficace en pre calculant les valeurs de la fonction du noyau pour 
un grand nombre de points representatifs et en sauvegardant les resultats dans une table de 
recherche de la valeur de la fonction pre calculee des noyaux. II pourrait enfin Stre interessant 
d'explorer la parallelisation du code de maniere ä ce qu'il puisse etre traite avec des ordinateurs 
possedant des architectures hautement paralleles (par ex. agregats Beowulf). 

Shao. Y. and Yee, E. (2004). The Rapid Evaluation of Mean Concentration Fields in Lagrangian 
Stochastic Modelling Using a Density Kernel Estimator. (DRDC Suffield TR 2004-186). 
R&D pour la defense Canada - Suffield. 
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Introduction 

The prediction of the dispersion of contaminants released into various turbulent flows is of 
practical importance in a number of applications ranging from industrial mixing problems to 
the analysis of nuisance and hazard in air quality, pollution and combustion problems 
involving the release of toxic or flammable materials. In consequence, much effort has been 
expended on the development of models to predict mean concentrations of contaminants for a 
given emission-source distribution. However, the accurate prediction of the transport and 
diffusion of passive scalars released in a spatially inhomogeneous and temporally 
non-stationary turbulent flow (e.g., inhomogeneous and non-stationary fields of mean wind 
speed and turbulence over complex terrain in the atmospheric boundary layer) is a challenging 
problem. For these types of turbulent flows, a Lagrangian Stochastic (LS) model describing 
the paths or trajectories of "marked" fluid elements offers great potential for studying 
contaminant dispersion since they can model properly inhomogeneities, non-steadiness, or 
non-Gaussianity in the background velocity distribution (viz., LS models of particle motion 
are a particularly attractive option for the simulation of dispersion in complex flows). 

In a LS model, the mean concentration of a passive scalar transported by a turbulent flow field 
(whose velocity statistics are assumed to be known or prescribed a priori) is obtained from the 
probability distribution of the displacements of independent "marked" fluid elements (or 
particles of tracer which should not be viewed as physical particles, but rather as markers 
keeping track of the effects of fluid convection) released from the source distribution of the 
scalar. Lagrangian approaches for calculation of dispersion provide a more natural approach 
than Eulerian techniques (usually based on eddy-diffusivity concepts which are strictly valid 
only for the case where the characteristic length scale of the spatial gradients in the mean of a 
scalar quantity is larger than the integral length scale of the turbulence, implying that these 
techniques cannot be applied to the simulation of dispersion close to a source). Moreover, LS 
models can be designed rigorously, based on a small set of principles, to give reliable 
simulations of dispersion in complex inhomogeneous, non-stationary or non-Gaussian flows 
where other methods based on eddy diffusivity concepts and/or other semi-empirical 
approaches (e.g., similarity theory, asymptotic solutions, etc.) are invalid or inadequate. In this 
regard, the well-mixed condition due to Thomson [1] provides the most rigorously correct 
theoretical criterion for the formulation of LS models of turbulent dispersion. 

In a stochastic or random-walk particle model, dispersion is simulated by following the 
trajectories of a large number of "marked" fluid particles released from the source into the flow 
domain, with the mean concentration of the scalar determined from the statistics of the particle 
displacements. This gives rise to a primary difficulty in the application of LS models; namely, 
the "correct" and numerically efficient estimation of the mean concentration at a given location 
and time from the information embodied in the "marked" particle trajectories. A stochastic or 
random walk model of particle motions is a grid-free method in which particles evolve in time 
according to stochastic equations of motion. Nevertheless, it is common practice in 
atmospheric dispersion modelling with LS models to calculate the mean concentration on a 
fixed grid using a particle-in-cell or box- counting method [2, 3,4, 5]. In the box-counting 
method, the mean concentration is proportional to the local particle number density (since the 
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mass carried by each particle is unchanged along the trajectory of the particle). More 
specifically, the mean concentration is estimated by multiplying the number of particles in a 
grid box by the mass carried by each particle (assumed equal), and dividing this quantity by 
the volume of the grid box. Unfortunately, the box-counting method for mean concentration 
estimation depends on the choice of the size and position of the grid boxes used for the 
estimation. To overcome this problem, Yamada et al. [6], Uliasz [7], and de Haan [8] used a 
density kernel method for mean concentration estimation which fits well into a LS particle 
model framework since the mean concentration is calculated without reference to a grid. A LS 
particle model coupled with the use of a density kernel estimator allows the mean 
concentration to be determined without reference to a grid (and, hence, provides a truly 
grid-free Lagrangian Monte Carlo method). 

In spite of the advantages of the kernel density estimator and the deficiencies in the 
box-counting method, the latter method is still predominantly used in atmospheric dispersion 
modelling for the estimation of the mean concentration field. This is because the kernel 
density estimator for the mean concentration is computationally much more demanding than 
the simpler box-counting method. More specifically, when implemented in a straightforward 
manner the computational work of the kernel density estimator scales as 0(NpNr) (Np andNr 

being the number of particles used in the simulation and the number of receptor points at 
which the mean concentration is calculated, respectively), whereas in the box-counting method 
the computational work is of order 0(Nr). Since large numbers of particles are typically 
required to accurately model the mean concentration field, the overall computational cost of 
using the kernel density estimator in a LS particle model would quickly become prohibitive. In 
consequence, it would be desirable to develop an algorithm for mean concentration estimation 
using density kernels for which the computational work scales as 0(Nr), enabling a 
computationally efficient and feasible kernel density method for estimation of concentrations 
from a stochastic Lagrangian particle model. It is the purpose of this report to develop and 
implement an algorithm which can calculate the mean concentration from a disordered set of 
particle positions (obtained from a LS particle model) in 0(Nr) computational work as 
opposed to 0(NpNr) work. The reduction of the computational complexity using our new 
algorithm will allow kernel density estimators for mean concentration to be used routinely in 
LS models for atmospheric dispersion. 

Mean Concentration Estimation  

The LS modelling of the dispersion of a passive tracer consists of simulating numerically the 
motion of many particles of tracer ("marked" fluid elements) released from the source 
distribution, in order to build up a picture of the concentration distribution. More specifically, 
if S(x',t') denotes the spatial-temporal density distribution of the source [viz., the mass of 
source material per unit volume per unit time interval at the source space-time point (x',f')], 
then the mean concentration C(xj) at the receptor space-time point (x,t) is determined from 
[9] 

(1) C(x,f)= / / PL(x,t\x',t')S(x',t')dt'dx', 
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where pL{x,t\x',t') = (b(x-X(t;x',t'))) is the conditional probability density function 
(PDF) that a marked particle released at the source space-time point (x',t') will be found at 
receptor (observation) space-time point (x,t). Here, 8(-) is the Dirac delta function, {•) is used 
to denote the averaging over the samples of the turbulent velocity field, and X(t;x',t') denotes 
the Lagrangian spatial coordinates defining the trajectory in physical space of a particle 
"marked" at the source point (x',t'). In Eq. (1), the spatial integration is over the domain (or, 
volume) V that contains the emission-source distribution S(x',t'). 

In accordance to Eq. (1), to estimate the mean concentration at receptor point x and time t 
requires the representation of the integral here as an expectation of a random estimator defined 
on Lagrangian trajectories. Since the exact form of pi(x,t\x'.t') is unknown, we need to 
approximate this particle displacement PDF from the solutions of stochastic evolution 
equations describing trajectories of fluid particles in a turbulent flow. The evolution equations 
for the position X(t) and velocity U(t) of a tagged fluid particle in a Lagrangian Stochastic 
model is typically based on a continuous Markovian evolution in position-velocity (phase) 
space specified by a stochastic differential equation of the form [1] 

(2) dUt = a,-(U, X, t)dt + (C0e) l/2dfy(t) 

and 
(3) dXt = Utdt, 

where dU\ and dXj (z = 1,2,3) denote the change (or, increment) in velocity and position over 
the time interval dt, respectively. More specifically, dUj = Ui(t + dt) — Uj(t) is the 
infinitesimal increment of the velocity U; following the marked fluid particle. Appearing in the 
equations is the drift coefficient vector a,(U,X,f), the universal constant Q associated with the 
Lagrangian velocity structure function, the mean rate of dissipation of turbulence kinetic 
energy E, and the isotropic vector incremental Weiner process rf£/(r). The value Q = 3.5 is 
recommended for the LS model used here [2, 10]. The increments d^j have a joint-normal 
distribution with zero means and an isotropic covariance matrix, 

(4) (dUt)) = 0,        {<K*{t)d%j{t + T)) - A80-6(T), 

where 8,-y denotes the Kronecker delta function. Finally, it should be emphasized that in a 
"correctly" formulated LS model, the drift coefficient vector should be chosen to satisfy the 
well-mixed condition [1] which guarantees that the model will maintain the correct 
phase-space distribution of particles in the sense that once the particles of tracer are 
well-mixed in the flow, they will remain so. 

The conventional method for evaluating the mean concentration of Eq. (1) is to apply the 
box-counting method and count the number of particles in a discrete grid cell centered at x at 
time t. This process is identical to the calculation of a three-dimensional histogram. In 
particular, the estimate C for the mean concentration at a given location x and time t is given by 

(5) C(x,0 = ^xAm. 
A/ 

where Npi(t) is the number of "marked" fluid particles at time t in the spatial cell / (that 
contains the receptor position x), A/ is the volume of cell /, and Am is the mass of tracer carried 
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by each fluid particle. Each fluid particle in the ensemble ofNp particles is assumed to carry a 
constant mass Am, Notice that, for a given spatial cell /, the sample size is usually relatively 
small (i.e., Np; <C Np), and hence the statistical error in the concentration estimate C(x,t) will 

— 1/2 generally be relatively large with the error scaling as Np ' .In consequence, box-counting 
estimates for the mean concentration will therefore generally require large sample sizes (i.e., 
Np large) if the statistical error is to remain small. Alternatively, it is possible to reduce the 
statistical error by increasing the size (volume) of the spatial cell, but this may result in the 
structural details in the mean concentration being oversmoothed (leading to a larger bias in the 
mean concentration estimate). In summary, many particles per spatial cell are required to keep 
the bias and statistical error in the mean concentration estimate small, but this requirement 
makes trajectory simulations computationally expensive and hence prohibitive. 

For these reasons, Uliasz [7] and de Haan [8] proposed another method for the estimation of 
the mean concentration based on density kernels. The foundation of the kernel estimate of a 
field variable at a point is interpolation theory generalized to the case of interpolation from the 
disordered positions of an ensemble of marked particles, where the underlying turbulent 
velocity field "deals" out the disordered positions. Within the volume of the physical space V, 
the mean concentration of the dispersing scalar is represented by Np particles, each 
representing a mass of tracer Am with the «-th particle—the numbering being 
arbitrary—having a position X^ (t) and velocity UW (/) at time t. Then the mass density 
function (concentration) C*(x,f) (which can be interpreted to be the discrete representation of 
the mean concentration distribution C(x,t) of a dispersing scalar and, as such can be 
considered to be an estimate of this distribution) is defined by 

(6) C*(x,0 = Am£5(x-X<">(0), 

where 

n=\ 

(7) 8(x-x«(o)=8(*i -4m)(t)M*2 -4U\*))H*> -4n)(t)) 

is the 3-dimensional Dirac delta function. For simplicity (but without any loss in generality), 
assume that the tracer is released from an instantaneous point source located at the origin 
x = 0 with the release occurring at time t = 0. Denoting by Q the total mass of tracer released 
{Q = NpAm), the (mathematical) expectation of Eq. (6) is 

(8) <cr(i,o) = ß<8(x-x*(0)>. 

where * refers to any particle n (1 < n < Np), Comparing Eq. (8) with Eq. (1) for the case of 
an instantaneous point source release at x = 0 and t = 0 (S(x%t') = Qb(x')8(t')), it is 
straightforward to show that the mass density function in Eq. (6) is a consistent (unbiased) 
representation of the mean concentration in the sense that 

(9) {(T(x,t)) = C(x,t). 
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The use of an interpolation function that provides the kernel estimate of the mean 
concentration at a space-time point involves replacing the 3-dimensional Dirac delta function 
in Eq. (6) by a weighting function (or, "kernel") that defines how much of the mass carried by 
a "marked" fluid particle contributes to the mean concentration field at the point x at time t. 
The kernel estimate of C(x.r) is then given by 

Np   1 
(10) C(x,t) = AmJ2^K(x-X^(t);h), 

n=l 

where h is the width of the (interpolating) kernel function K(r;h). The kernel function is a 
non-negative valued function [K(r;h) > 0] that satisfies the property 

(11) /  K(r;h)dr=l, 
Ja.s. 

where the integral is taken over all space (a.s.). 

The kernel method does not require the physical space to be partitioned into grid cells and 
produces a smooth mean concentration field with a much smaller number of particles than is 
required for the box-counting method. The width (or, smoothing length) h determines the 
degree of smoothing of the mean concentration field. The smaller values of A give a more local 
estimate for the mean concentration, but result in fewer particles giving significant 
contributions at a given (receptor) point x and, hence, more statistical error in the estimate. 
Taking h larger allows more "marked" fluid particles to contribute to the mean concentration 
estimate at a receptor location x reducing the statistical error, but taking h too large will smooth 
out detailed features from the mean concentration distribution increasing the bias in the 
estimate. In consequence, the choice of the bandwidth A is a compromise between smoothing 
enough and not smoothing too much to smear out the real features in the mean concentration 
distribution. Mathematically, there is a compromise between the bias and variance of C(x,t), 
which increases and decreases, respectively, as h is increased. Theory for density kernel 
estimators [11] suggests that the kernel bandwidth should be chosen proportional to Np     , but 
the constant of proportionality depends on the unknown mean concentration distribution. 

Following de Hann [8], we consider two types of kernel functions K with finite (or, compact) 
support. The latter implies that only a subset of the "marked" fluid particles contributes to each 
kernel estimate of the mean concentration. In particular, we use kernel functions with the 
general form 

f Q.a(l-52)a; s2<\, 
(12) K(r.h)=\ V ) 

I 0; s2>l, 

where s = (r • r)     fh, a is an exponent, d is the number of dimensions, and Q.a is the 
normalization constant. In this report, we consider kernel functions with a = 1 (parabolic 
kernel, which is referred to also as Epanechnikov kernel [12]) and a = 4 (quadweight kernel). 
For these two kernels, the normalization constant Q.a [obtained from the normalization 
constraint Eq. (11)] takes the values \ or || for a — 1 and | or |y|| for a — 4 in two- and 
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three-dimensions (d = 2 and 3), respectively. One of the key advantages of using Eq. (12), as 
opposed to, say a Gaussian kernel function (K(r;h) = exp(— s2/2)/{2nh)d^z)! is that it has a 
finite support so that "marked" fluid particle contributions to mean concentration at a given 
(receptor) point x are exactly zero for particles at distances r = (r • r)1/2 > h (or, equivalently, 
s = r/h> 1). Figure 1 shows the profiles of non-normalized parabolic and quadweight kernels 
(i.e., profiles ofK(r,h)/Cd.a = K(s)). 

A Fast Algorithm for Kernel Density Estimation  
Algorithm description 

The naive implementation of the kernel estimate [cf. Eq. (10)] for the mean concentration field 
is simple. Since the kernel functions considered here have a compact support [refer to 
Eq. (12)], only a subset of the fluid particles will contribute to the kernel estimate at a given 
(fixed) receptor location x, corresponding as such to the nearest neighboring particles for the 
receptor position. The naive evaluation of Eq. (10) then consists of an all-pair search approach 
whereby the distance r« = ((x - X<">(f)) • (* - X« (/)))1/2 (» = 1,2,... ,NP) of each tagged 
fluid particle from the receptor location x is calculated, and if this distance is smaller than h 
(bandwidth of the kernel function centered about the particle position, which also defines the 
support domain of the function), the mass carried by the particle contributes to the mean 
concentration at receptor point x. The all-pair search approach needs to be carried out for each 
receptor location xr (r = 1,2,... ,Nr, where Nr is the number of receptor locations where the 
mean concentration is calculated), and at each of these locations the searching is performed for 
all Np particles at the given time t. It is clear that the complexity of the all-pair search 
algorithm for the computation of the kernel estimate of the mean concentration field is of order 
0(NrNp) ~ 0(N2) (ifNr taNp = N). Furthermore, this naive algorithm needs to be applied at 
all time steps (since the tagged fluid particle positions are evolving in time) so that the 
computational cost of the conventional (albeit straightforward) implementation of the kernel 
estimate of the mean concentration field is computationally prohibitive (and, typically, too 
expensive to be applied in practical problems where the number of particles is large). 

The straightforward implementation of the kernel estimate for the mean concentration 
corresponds to a huge waste of computational time since only a small fraction of the total Np 

fluid particles will contribute to the concentration at a given (fixed) receptor location. Our 
approach for improving the computational efficiency of the kernel estimator (grid-free method) 
is to maintain a neighbor list for each fluid particle. The methodology used to keep track of 
nearest neighbor fluid particles relative to a given receptor point is to divide the physical 
volume V (flow domain) into cells or elements (viz., a temporary mesh is overlaid on the flow 
domain to provide a tesselation of the domain). Each cell in the tesselation of the 
3-dimensional domain is a cube (or, a square for a 2-dimensional domain) with side length 
equal to h (smoothing length of the kernel function), the reason being that the kernel functions 
centered on the fluid particles only contribute to the concentration at a receptor location if the 
distance r between the particle position and the receptor location is less than h (i.e., r < h). In 
consequence, with cells of side length h, we only need to check the current cell which contains 
the receptor location and nearest neighboring cells in order to find all possible fluid particles 

DKDC Suffield TR 2004-186 



that can contribute to the mean concentration at the receptor location. 

To facilitate using cells as a book-keeping device to keep track of fluid particle positions, each 
cell in the superimposed structured grid is associated with a linked list. Each "marked" fluid 
particle in the flow domain is assigned to the cell it resides in and identified through the linked 
list associated with that cell. The cells in the tesselation of the physical domain can be 
identified by the index set (/,_/) or (i,j,k), respectively, for a 2-dimensional or 3-dimensional 
domain. If (ij, k) is the index set for cell P in a 3-dimensional physical region, then the cells 
immediately to the right and left of P are labelled (i +l,j,k) and (i — \,j,k), the cells 
immediately in front and back are (i,j+ l,k) and (/,_/' —l,k), and the cells directly above and 
below are (i, j,k+l) and (i,j,k—l). For a given receptor location x contained in cell P with 
label (i,j, k), all fluid particles which can contribute to the concentration at x can only reside in 
cell P and/or in the one of its immediately adjoining (nearest neighbor) cells with labels 
(i±a,j±$,k±y), where a, ß, ye {0,1} excluding the choice a = ß = y=0 (which 
corresponds to cell P itself). Hence, for the computational cell (box) P labelled by the index 
(i,j,k), the list of all nearest neighbor cells to P, denoted by near(P), is the set of all cells 
labelled by the index set {(i±aj±$,k±y)\a, ß, ye {0,1},ct^ ß^ y=0}. Therefore, the 
search for fluid particles that can contribute to the concentration at x is confined to only 9 or 27 
cells in 2- or 3-dimensional space, respectively. The linked list associated with each cell allows 
the fluid particles assigned to each cell to be chained together for easy access. 

The superimposed grid allows the "binning" (or sorting) of the fluid particles into Nc cells, 
with the average number of particles per cell being about Np/Nc (assuming the particles are 
uniformly distributed in the physical domain). If the average number of fluid particles per cell 
is small (Np » Np/Nc, the latter of which is of order 0(1)), the computational complexity of 
the linked list algorithm for the kernel estimate of the mean concentration field is of 0{Nr). 
This computational effort is optimal since the program must at least loop through all Nr 

receptor locations in order to compute the mean concentration field at a particular time t (viz., 
traversing a "data" set of Nr receptor locations has a minimal computational complexity of 
order 0(Nr)). 

Programming considerations 

A computer program that implements the linked list (fast) algorithm for the kernel estimation 
of the mean concentration field has been written. The program contains less than several 
hundred lines of Fortran 90/95 code. In this subsection, we summarize some of the more 
technical details of our implementation of the fast kernel density estimator. 

The beginning of the code shown below contains definitions of the components for one derived 
data type: namely, cells. This derived data type cells contains an integer variable counter 
to hold the fluid particle number index, four real variables mass, x, y, and z to hold the fluid 
particle mass and the coordinates (x,y,z) of the fluid particle position in 3-dimensional space, 
and a pointer variable NextParticle to a derived data type cells variable as its last 
component. This pointer points to the next item (particle) in the linked list of particle 
properties contained in a given computational cell. A linked list of particles associated with a 

DRDC Suffield TR 2004-186 



given cell is simply a series of variables in the derived data type cells with the pointer from 
each derived data type variable pointing to the next variable in the list. The pointer 
NextParticle of the last element of the linked list is set to NULL, a convenient sentinel 
marking the end of the list. 

Each cell of the tesselation of the physical region has a linked list associated with it, the latter 
used simply as a convenient book-keeping device to keep track of the particles inside that cell 
at a given time t. This feature is very useful because it permits us to construct various types of 
dynamic data structures linked together by successive pointers during the execution of a 
program. We use a linked list to hold the fluid particle properties in a cell because the number 
of fluid particles in a given cell can vary with time as the position and velocity of the particles 
evolve according to the stochastic differential equations exhibited in Eqs. (2) and (3), and the 
linked list permits us to add (remove) elements to (from) the list one at a time without knowing 
in advance how many elements will ultimately be in the list. Since there are mutiple cells in 
the flow domain, another derived data type cell-pointer is defined and used in the 
declaration of 3-dimensional arrays of pointers to derived datatype cells. Here, 
cell-pointer is denned to be a pointer to the derived data type cells. Finally, two 
3-dimensional arrays of pointers (head and tail) to variables of derived data type cells are 
also defined to point to the first and last variables in the linked list for each cell. To access an 
element in the linked list, we start at the head of the list and use the pointers NextParticle of 
successive elements to move from element to element until the desired element is reached. 
With the singly-linked lists used here, the list can be traversed in only one direction (from head 
to tail) because each element contains no link to its predecessors. 

The following is a formal definition of some derived data types required by the algorithm. 

TYPE   :;   cells 
INTEGER  :;  counter 
REAL  :;  mass 
REAL   ::  X 
REAL   ::   y 
REAL   :;   Z 
TYPE  (cells),  POINTER  ;;  NextParticle 

END TYPE 

TYPE cell_pointer 
TYPE(cells),   POINTER   ::  pptr 

END TYPE cell_pointer 

TYPE(cell_pointer), ÄLLOCATABLE»   DIMENSIONS ,:, :)   ::  head 
TYPE(eell_pointer), ÄLLOCATABLE,   DIMENSION(:,:,:)   ::  tail 

TYPE   (cells)   :;  temp !  Temporary variable 

Having defined some useful data structures, the fast algorithm for kernel estimation of the 

DRDC Suffield TR 2004-186 



mean concentration field consists of the following main steps: 

1. Tesselate the flow domain into cells (cubes) with side length h (bandwidth of the kernel 
function). 

2. Open the input file containing the "marked" fluid particle properties (index, mass, 
location) at a given time t. 

3. Read in the properties (index, mass, location) of each fluid particle, determine the cell the 
particle resides in, and insert the relevant particle information into the linked list for that 
cell. 

4. Define the set of receptor locations at which to calculate the mean concentration. 

5. For each receptor location, determine the cell P that it resides in, extract the fluid particle 
properties from the linked list for this cell, and calculate the contribution of each of these 
fluid particles to the kernel density estimator of the mean concentration. 

6. Identify the 26 nearest neighbor cells (near(P)) to the cell P containing the receptor 
location, extract the fluid particle properties from the linked lists for each of these 
adjoining cells, and for each particle calculate the Euclidean distance r between the 
particle and receptor location. For each particle whose distance r from the receptor 
position is less than h, calculate the contribution of this particle to the kernel density 
estimator of the mean concentration. 

7. Output the mean concentration field at the given time /. 

Following is a formal description of the algorithm. 

Algorithm 

Input functional form of kernel function 

Input bandwidth h of kernel function 

Subdivide the flow domain into contiguous cells of side length h 

Open file containing fluid particle property information 

WHILE 

Read fluid particle property information into temp 

IF read not successful EXIT 

Determine index of cell where current particle resides 

Get linked list for current cell 

! determine which cell (ip,jp,kp) the particle is located in 

ip = INT((temp%x - Xmin)/bandwidth) + 1 
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jp = INT((temp%y - Ymin)/bandwidth) + 1 

kp = INT((temp%z - Zrnin)/bandwidth) + 1 

IF headdp,jp,kp) (of linked list) is not associated THEN 

! The list is empty 

ALLOCATE head(ip,jp,kp) 

! Tail points to first value 

tail(ip,jp»kp) => head(ip.jp,kp) 

I Nullify pointer NextParticle within 1st value 

! since there is nothing to point to yet 

NULLIFY tail(ip,jp,kp)INextParticle 

! Store particle information (index,mass,location) 

! in linked list 

tail(ip,jp,kp) <-- temp 

ELSE /*-: 
! The list already has particle information inserted 

ALLOCATE tail(ip,jp,kp)INextParticle 

! Tail now points to new last value 

tail(ip,jp,kp) => tail(ip.jp,kp)INextParticle 

! Nullify pointer within new last value 

NULLIFY tail(ip,jp,kp)%Nextparticle 

! Store new particle information 

tail(ip,jp.kp) <-- temp 

END of IF 

END of WHILE 

Define receptor locations and calculate index (ie,jc,kc) 
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of cell where each receptor resides 

DO for each receptor location with index (ic,jc,kc) 

Get linked list for receptor cell 

ptr => head(ic,jc,kc)   ! go back to the head of the list 

WHILE ptr is associated 

Get the particle coordinates 

Calculate contribution to concentration at receptor 

ptr => ptr%Nextpointer 

END of WHILE 

Get linked lists for all the nearest neighbor cells to 
receptor cell P with index  (ic,jc,kc) 

DO for each linked list in near(P) 
ptr => head(near(P)) !  go back to the head of the list 
WHILE ptr is associated 

Get the particle coordinates 
Calculate Euclidean distance from particle to receptor 
If distance less than h,  calculate contribution 
to concentration at receptor 
ptr => ptr%Nextpointer 

END of WHILE 
END of DO 

END of DO      !  next receptor location 

WRITE out mean concentration field at all receptor points 

A Fortran 90/95 computer program that implements the fast kernel estimator for the mean 
concentration is available from the authors upon request. The computer program has been 
implemented using both 2-dimensional and 3-dimensional kernels. 

Simple Lagrangian Stochastic Particle Model 

As a test of our new method for the fast kernel estimation of the mean concentration, we have 
written a simple trajectory-simulation model for turbulent dispersion from an instantaneous 
and continuous point source in a neutrally stratified inhomogeneous shear flow (constant stress 
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layer in the atmospheric boundary layer). The trajectory-simulation approach to modelling 
dispersion of a passive tracer consists of simulating the trajectories of many particles of tracer 
to build up a picture of the mean concentration distribution. In this section, we use Cartesian 
tensor notation, but for convenience ocassionally we also use Cartesian coordinates (x,y,z) and 
(u, v, w) to denote the streamwise, cross-stream, and vertical coordinates and velocities, 
respectively. 

Particle model description 

The dispersion of a passive scalar is described by the stochastic differential equation 
(generalized Langevin equation) exhibited in Eqs. (2) and (3). The drift term (or, conditional 
particle acceleration) a,- in Eq. (2) is constrained for a particular flow by specifying the the 
Eulerian velocity statistics for that flow, and requiring that the Eulerian statistics determined 
from the LS model [Eqs. (2) and (3)] reproduce the specfied statistics. A sufficient condition 
for this to be achieved is embodied in the well-mixed criterion (Thomson [1]) which requires 
the Eulerian velocity PDF i>£(u;x,7) satisfy the Fokker-Planck equation for the joint PDF of 
velocity and position P(u,x,/) associated with the stochastic differential equation system 
specfied by Eqs. (2) and (3). Application of the well-mixed criterion constrains a,- as 

(13) aiPjs = -Q>ETl + h, 
2       du; 

where 
(14) 3<l>,-=    dPE    dujPE 

But dt        dxj 

and <)>,■ —► 0 as |u| —»■ oo (|. | denotes the Euclidean norm). Note that Eq. (14) does not determine 
<{>, uniquely since an arbitrary solenoidal vector function in velocity space (i.e., function whose 
divergence with respect to w, vanishes) can be added to <|),- and still satisfy Eq. (14). Hence, the 
well-mixed criterion allows one to determine 'a' drift function rather than 'the' drift function 
since one can add any solenoidal vector function \|/,- (d\|/,-/3w,- = 0) to (j),- without changing 
dtyi/diii and the interpretation of this "gauge" freedom in terms of the statistical properties of 
the flow is awkward. 

We consider the case of Gaussian stationary, inhomogeneous turbulence where PE is given by 

(15) PE(n;x,t) = ^jexp (-Ifa-Üfrjfa-Üjf) , 

where Ty = (P-1)// is the inverse of the Reynolds stress tensor Vy (i.e., Vy = {uftj) is the 
covariance between the z'-th and y'-th components of the Eulerian velocity where a primed 
quantity refers to the deviation from the mean value for that quantity), yis the determinant of 
Tjj, and Üj is the mean velocity. Summation over repeated tensor indices i,j,k,... is implied 
(Einstein summation convention). In this case, Thomson [1] provided the following form for a 
conditional acceleration vector <j), (with u\ = «,- — £/, being the velocity fluctuation) that is 
consistent with the well-mixed criterion: 

,,. <>/   ,-,aöi_,_aöi- ,   lar,/   l... dva    ,\mr ,., (16) TrUl^ + ^Ul+2M+2Um^T,^+2^Tl^Uk- 
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The expanded form of Eq. (16) is complicated. In this report, we consider a simple 
neutrally-stratified flow with mean velocity vector Ü = (£7,0,0) and turbulence velocity 
statistics varying only in the z-directionJ(vertical direction). Furthermore, we make the 
assumption that we can ignore the covariance between the different velocity components (i.e., 
(u'iu'j) = 0 for i / j). In this case, Thomson's solution for the drift coefficient reduces to with 
i = 1,2,3 = w,v, w: 

C0e ,    dÜ 1  dal , / 
a" =  -2cJU + teW+2cl,^UW> 

C0e ,      1   dal / / 
Uv =  -2aJV+2ä},-öTVW> 

(17) aw  = 
C0e   ,1 dal 

-W -r 
2al 2 dz 

where al, al, and al, are the Eulerian velocity variances in x-, y-, and z-directions, 
respectively. 

The meteorological inputs of the model are the vertical profiles of the mean wind speed Ü, of 
the Eulerian velocity variances al, al, and al,, and the turbulence kinetic energy (TKE) mean 
dissipation rate e. In this report we consider only a neutrally stratified shear flow (i.e., Obukhov 
length L —> °°), and we assume that the Eulerian velocity variances in the x- and ^-directions 
(horizontal velocity variances) are equal so al = al. The average wind speed in the surface 
layer above the ground is described analytically by the semi-logarithmic law-of-the wall: 

(18) "M = Xi), 
where «* is the friction velocity, K as 0.4 is von Karman's constant, and ZQ is the surface 
roughness length. Our parameterizations for the turbulence velocity flow statistics follow those 
suggested by Rodean [13] for a neutrally-stratified boundary-layer flow: 

(19) 

(20) 

c„ = o„ = u„ 4.5 

<y„, = w* 

(21) e = 

■•(-5) 

S('-»^) 

1.5 

1.5 

where H is the depth of the (atmospheric) boundary layer. 

The stochastic differential equations (2) and (3) with the drift coefficients (conditional 
acceleration) determined from Eq. (17) are integrated forward in time using a simple 
first-order Euler scheme. With this scheme, the update from time t„ to time tn+\ (with time step 
At = tn+\— tn) for advancing the fluid particle position and velocity has the form 

(22) X"+l   =  X" + U"Af, 

(23) U"+1   -  U" + a"A/+(C0£")1/2AW", 
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where AWj is a Gaussian pseudo-random number with mean (AWj) — 0 and covariance 
(AWiAWj) = Atbjj. Superscripts n and n + 1 in Eq. (23) denote the values at time tn and 
tn+\ =t„ + At, respectively, and a" is the drift coefficient vector evaluated at time tn, i.e. 
a" = a(U",X".f„). Note that the coefficients in Eq. (23) are evaluated at X" and U" and, hence, 
the Euler approximation is explicit. The time step At is chosen to be a small fraction of the 
Lagrangian time scale %L = 2a^/(Cbe) (more specifically, a time step At — O.Olii was found 
to give both an accurate and stable solution to the stochastic system for fluid particle 
evolution). The value of the universal constant Q possesses considerable uncertainty. The 
existing literature seems to suggest that it depends on the structure of the turbulent flow being 
considered. As regards to the choice of Q for atmospheric dispersion applications, it appears 
that a choice Co ~ 3.5 provides good agreement with data [2, 10] for the one-dimensional LS 
model (model that neglects the shear stress of the background flow). 

Simulation Results  
Continuous point source 

In the first set of numerical experiments, we test the code with experimental data and compare 
the estimate for the mean concentration obtained using the box counting and the fast kernel 
density estimator methods with measured data. To this purpose, concentration profiles 
measured in the atmospheric surface layer under near neutral conditions during the Project 
Prairie Grass experiment will be used as a reference for comparison. 

Project Prairie Grass represents a benchmark field experiment for turbulent dispersion in the 
atmospheric surface layer. The Project Prairie Grass (PPG) experiment is fully discussed in the 
reports by Barad [14] and Haugen [15]. A continuous point source of sulfur dioxide (SO2) at a 
height of 0.46 m above an extensive flat plain was used in this experiment. In each run, the 
time-averaged (mean) concentration was measured over a sampling period of 10 min using a 
large number of downwind detectors placed on circular arcs centered at the source. All data 
considered herein are from the arc of detectors with a radius of 100 m as this was the only arc 
at which the vertical concentration profile was measured. Equivalent two-dimensional 
concentration profiles C7(x,z) with x — 100 m were derived by performing a crosswind 
integration on the concentration; that is, the crosswind integrated concentration (CWIC) was 
obtained from 

(24) <y(x,z) = Jc(x,y,z)dy. 

Sulfur dioxide is almost a perfect conservative tracer with the uptake by the (grass) surface 
being small (i.e., the surface is almost a perfect reflector). We therefore treated the surface as a 
perfect reflector at the roughness length ZQ when calculating fluid element trajectories. In the 
PPG experiment, the roughness length of the surface was estimated to be about ZQ « 0.006 m. 
In application of the kernel estimator for the mean concentration, the concentration at a given 
point near the surface must account explicitly for the reflection of particles from the ground 
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surface, with the result that the kernel estimate for C(x,t) given by Eq. (10) is replaced by 

(25) C(x,0=Am5^[tf(x-X<">(0;A)+*(x-X<">*(0;A) 
n—\ 

where X^* = (x\n , Y["\ — Z\n') is the location of a virtual fluid particle that is associated 
with the real fluid particle at the location Xw = (x\n), 7,("), z\n)) (viz., the virtual fluid particle 
is the mirror image of the real fluid particle with respect to the ground surface at z = 0). More 
specifically, for particles near the ground surface (at a vertical distance less than the kernel 
bandwidth h) at X^ = (x[n), Y^ ,Z{"]) (with z[n) < h), an equivalent virtual (or, ghost) 
particle is also introduced at X^* — (A,   , Y^', —Z[n') to provide a symmetrical surface 
boundary condition at z = 0. It is noted that for the continuous release considered here, the 
position of the 'marked' fluid particles are written to the data file every 8r s for the entire 
simulation time, and this information is used to constuct a kernel estimate for the mean 
concentration exhibited in Eq. (25). In particular, each 'marked' fluid particle carries the 
source mass flow rate Q/Np (Q is the mass flow rate of the source) so the mass carried by each 
particle over the interval BT is S/w = QBT/NP). For box-counting, the steady-state mean 
concentration in a small cell (Ax x Ay x Az) enclosing the receptor point (x,y,z) is estimated as 
follows: 

o      Np 

(26) C(x,y,z)=        \      TTn, Nn&xAyAz *—* 

where Q is the source strength (kg s_1) and T„ is the total time the w-th particle remains in the 
cell (residence time) and is calculated by accumulating the time steps dt whenever the w-th 
particle resides in the cell. 

Figure 2 shows the observed and predicted vertical profile of normalized cross wind-integrated 
concentration uJJ JQ at a downwind fetch x = 100 m due to a continuous source of strength 
Q (g(S02)s_1) releasing tracer into a near-neutral surface layer. With this normalization, the 
normalized crosswind integrated concentration is independent of «* (for a fixed ZQ and 
experimental geometry). The observations here represent the average from the nine PPG runs 
that were the nearest-neutral in atmospheric stratification (namely, the average from PPG runs 
49, 62, 26, 61, 30, 20, 33,45, and 57 with Obukhov lengths L in the range from -36 to 
—240 m). The predicted results for mean concentration were estimated from 5,000 
independent particle trajectories. Based on only 5,000 independent trajectories, the fast kernel 
density estimator (using the quadweight kernel function) for the mean concentration yielded a 
good conformance with the PPG observations. The mean concentration estimate based on the 
box-counting method (using bins Ax = 2 m and Az = 0.1 m) also gave results that closely 
resembled the PPG data, although with only 5,000 independent trajectories the statistical error 
(or, variability) in the estimate is quite significant. In the box-counting method, the 

— 1/2 root-mean-square statistical error scales as Np     . 

Figure 3 is a plot showing the mean concentration estimate based on box-counting using 
50,000 independent particle trajectories. The statistical error in this box-counting estimate for 
the mean concentration is reduced considerably in comparison with that obtained using only 
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5,000 particle trajectories. Furthermore, note that the kernel estimate for the mean 
concentration based on 5,000 independent particle trajectories gives as good a prediction for 
the concentration as that based on box counting using 50,000 particle trajectories. 

Instantaneous point source 

In this subsection, we consider the tracer dispersion resulting from an instantaneous point 
source released in the neutrally-stratified, horizontally homogeneous, wall-shear layer 
(constant stress layer). To simulate the mean concentration field resulting from an 
instantaneous point source, thousands of particles are typically released at the source location 
with their initial velocities equal to the Eulerian turbulent velocities at this location, and their 
random trajectories calculated using Eqs. (2) and (3), with the drift term a,\(i — 1,2,3 = u, v, iv) 
specified by Eq. (17). In the following simulations, an instantaneous point source located at 
x = y = 0 and z = 1 m releases Q = 1 kg of tracer into the neutrally-stratified constant stress 
layer with a roughness length ZQ — 0.006 m and friction velocity «* = 0.1 ms_1. 

Figures 4 and 5 show comparisons of the mean concentration estimate along the mean cloud 
centerline at y = 0 and at a height z=lm above ground level obtained using the direct (naive) 
implementation of the density kernel estimator and the fast kernel estimator algorithm 
described herein. The concentration estimates were based on 50,000 independent fluid particle 
trajectories, and were obtained at six different times after the instantaneous point source 
release (at t — 0). The density kernels used here were the parabolic (Epanechnikov) (Figure 4) 
and quadweight (Figure 5) kernel functions applied with a bandwidth h = 2m. Note that the 
direct and fast algorithms for kernel density estimation gave identical results for the mean 
concentration (as they should). However, for the calculation of the mean concentration field at 
513 receptor locations for 6 different travel times, the fast algorithm and direct method for 
density kernel estimation required, respectively, 14 s and 2800 s to complete. The calculations 
cited here were carred out on a PC with a Xeon processor (3.2 GHz clock speed) running Red 
Hat Linux 9 Operating System. For this example, the fast algorithm is roughly 200 times faster 
than the direct method for density kernel estimation, and this speedup factor is expected to 
increase for applications where the number of receptor locations and/or independent fluid 
particle trajectories are greater than what were used for this simple example. 

It was shown in the previous subsection that the trajectory-simulation model used here leads to 
predictions of mean concentration that are in very good agreement with atmospheric 
measurements of concentration obtained downwind of a continuous point source. There are no 
benchmark concentration data for an instantaneous point source release that can be used to 
compare with concentration estimates obtained using the fast kernel density estimator. In 
consequence, for the case of an instantaneous point source, the "true" mean concentration that 
will be used as a reference for comparison will be obtained using a very large number 
(5 x 106) particle trajectories with the "true" concentration obtained using the conventional 
box-counting method with small grid cells (cubes) of side length one meter. 

Figures 6 and 7 exhibit streamwise (x-wise) cross-sections of the normalized mean 
concentration C/Q estimates at 6 different times after the release obtained using the fast kernel 
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density estimator. These streamwise (x-wise) cross-sections were obtained at 
(y,z) = (lm.l m) and (y,z) = (1 m,3 m), respectively. The estimates were obtained without 
applying the virtual (ghost) particle corrections near the ground surface as described in 
Eq. (25). The estimates used the parabolic and quadweight kernel functions with a constant 
bandwidth A = 2m. The kernel density estimates were based on 50,000 independent particle 
trajectories. In spite of this, there is generally a good conformance of the quadweight kernel 
density estimate for the mean concentration with the "true" mean concentration based on 
5 x 106 independent particle trajectories at both z—\ and 3 m (cf. Figures 6 and 7, 
respectively). The kernel density estimator produces relatively "smooth" concentration 
estimates for even 50,000 particles. The parabolic kernel density estimator underestimated the 
"true" mean concentration at z = 1 m, although exhibited good conformance with the "true" 
mean concentration atz = 3 m. This is because the shape of parabolic kernel is broader [see 
Figure 1] than that of the quadweight kernel and at z = 1 m above the ground, the parabolic 
kernel function with h = 2 m has its domain of support "truncated" significantly by the ground 
surface at z = 0 m. 

Figure 8 exhibits streamwise (x-wise) cross-sections of the normalized mean concentration 
C/Q estimates at (y,z) = (1 m, 1 m) and at 6 different times after the release, obtained using 
the fast kernel density estimator. However, these results were calculated using the kernel 
density estimator of Eq. (25) which accounts explicitly for the ground boundary effects by 
introducing for each particle at a vertical distance less than h (bandwidth) from the ground an 
associated virtual (ghost) particle below the ground surface placed at the mirror image location 
relative to the ground plane at z = 0. Note that the mean concentration estimates based on the 
parabolic kernel are greatly improved (cf. Figure 6) when the ground boundary effects are 
incorporated. 

Figure 9 shows the simulation results for streamwise (x-wise) cross-sections of the normalized 
concentration C/Q estimates obtained at (y,z) = (1 m.3 m) using a fast kernel density 
estimator (for both parabolic and quadweight kernel functions with h = 2 m). These estimates 
were obtained using only 20,000 independent particle trajectories. In spite of this, 
intercomparison of the kernel estimates with the "true" concentration shows good agreement, 
although not unexpectedly the statistical variability in the kernel estimates are larger than those 
exhibited in Figure 7 for 50,000 particles. Finally, Figure 10 displays the fast kernel density 
estimates of the normalized mean concentration C/Q obtained in streamwise (x-wise) 
cross-sections through the dispersing cloud at (y,z) — (1 m,3 m). This kernel density estimate 
was obtained using only 10,000 independent particle trajectories for a parabolic kernel with a 
larger bandwidth h = 6 m. In comparison with Figure 9, note that increasing the bandwith h 
from 2 m to 6 m reduced the statistical error (variability) in the concentration estimate, but 
increased the bias. This bias is largest near the source release (cf. kernel-based concentration 
estimate at / = 10 s with the "true" concentration where it is seen that the peak mean 
concentration is underestimated, but the width of the streamwise concentration profile is 
overestimated). In this example, a smoothing length h = 6 m is too large and results in an 
over-smoothing of the mean concentration near the source (viz., at small travel times) where 
changes in the concentration are sharp. However, further from the source when the mean 
concentration gradients are not as large, the larger kernel bandwidth leads to good estimates 
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for the concentration with even 10,000 particle trajectories. 

Conclusion 

The kernel density estimator for the mean concentration field given information embedded in 
"marked" fluid particle trajectories provided an important improvement on previous methods 
for concentration estimation based on box-counting techniques that were sensitive to the size 
and location of imaginary sampling volumes. In spite of this, kernel estimators have rarely 
been used in Lagrangian particle modeling because the straightforward (direct) 
implementation of this method leads to a computational effort that is prohibitive as the 
computational work scales as 0(N2) (where N « Nr K. Np). In this report, we present and 
implement an algorithm for the rapid evaluation of the kernel density estimate of the mean 
concentration field that requires an amount of computational effort proportional to N, and this 
method is insensitive to the precise distribution of the "marked" fluid particles in physical 
space (degree of disorder of the fluid particle positions which result from the stochastic 
trajectory-simulation model). In practice, speedups of two to three orders of magnitude may be 
expected in application of the fast kernel density estimator compared to the naive approach, 
depending on the number of particles simulated and the number of receptor locations at which 
the mean concentration needs to be determined, rendering previously computationally 
prohibitive simulations feasible. In this report, both two- and three-dimensional versions of the 
fast kernel density estimator have been constructed and implemented. Results from a number 
of numerical experiments have been conducted to verify the algorithm. 

There are several ways in which the code for the fast linked list based algorithm for the density 
kernel estimator of the mean concentration field can be either generalized and/or made more 
efficient. The linked list data structure used here is appropriate for the case where the 
bandwidth of the density kernel associated with each particle is fixed. In principle, the 
bandwidth h need not be constant and for many applications it may be useful to allow a 
variable smoothing length that is dynamically adapted so that the number of neighboring fluid 
particles within the domain of support of a kernel function centered on any particular particle 
remains constant. The generalization of the proposed fast kernel density estimator for variable 
kernel bandwidth h will probably require that the linked list data structure used here be 
replaced by a hierarchy tree data structure that can be adopted to suit the needs of a variable 
bandwidth. In the application of the fast kernel density estimator, the code can be made even 
more efficient by pre-computing the values of the kernel function at a large number of 
representative points and storing the results in a pre-computed kernel function value look-up 
table. Finally, it may well be worth exploring the parallelization of the code so that it can be 
executed on computers with highly parallel architectures (e.g., Beowulf clusters). 
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Figmre 1: Profile of the non-normalized Epanechnikov (parabolic) (clashed line) and quadweight (solid line) kernels. 
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Figure 2: Normalized mean concentration estimates based on the box-counting and fast kernel density estimator 

methods compared with observations obtained from the Project Praire Grass experiment. The concentration 

estimates were based on 5,000 independent particle trajectories calculated using a Lagrangian Stochastic model. 

The kernel function used for the mean concentration estimate is the quadweight kernel. 
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Figure 3: Normalized mean concentration estimates based on the box-counting and fast kernel density estimator 

methods compared with observations obtained from the Project Praire Grass experiment. The concentration 

estimates obtained using the box-counting and fast kernel density estimator were based, respectively, on 50,000 

and 5,000 independent particle trajectories calculated using a Lagrangian Stochastic model. The kernel function 

used for the mean concentration estimate is the quadweight kernel. 
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Figure 4: Simulation results for the normalized mean concentration along the mean cloud centerline aty = 0 and at 

height z=\ m obtained using the direct and fast kernel density estimators for an instantaneous point source release 

at x = y = 0 and z = 1 m. The mean concentration is obtained at 6 different times after the tracer was released from 

the point source; namely, at (a) t = 10, (b) t = 20, (c) t = 30, (d) t — 40, (e) t — 50, and (f) t = 60 seconds. The 

kernel function used for this simulation is the parabolic (Epanechnikov) kernel with a bandwidth h = 2 m. The solid 

line and open circles represent the results obtained from the direct and fast kernel density estimators, respectively. 
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Figure 5: Simulation results for the normalized mean concentration C/Q along the mean cloud centerline aty = 0 

and at height z=\ m obtained using the direct and fast kernel density estimators for an instantaneous point source 

release atx=y = 0 and z=\ m. The mean concentration is obtained at 6 different times after the tracer was 

released from the point source; namely, at (a) t = 10, (b) t — 20, (c) t = 30, (d) t = 40, (e) t - 50, and (f) t = 60 

seconds. The kernel function used for this simulation is the quadweight kernel with a bandwidth h = 2m. The solid 

line and open circles represent the results obtained from the direct and fast density kernel estimators, respectively. 
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Figure 6: Simulation results showing streamwise (x-wise) cross-sections of the normalized mean concentration 

C/Q obtained at (y,z) = (1 m, 1 m) for an instantaneous point source release at x = y = 0 and z — 1 m. The mean 

concentration is obtained at 6 different times after the tracer was released from the point source; namely, at (a) 

i = 10, (b) t = 20, (c) t = 30, (d) t = 40, (e) t = 50, and (f) t = 60 seconds. The normalized concentration estimates 

were obtained from SO, 000 independent particle trajectories using the fast kernel density estimator with a parabolic 

(dotted line) and quadweight (dashed line) kernel functions with a constant bandwidth h = 2m. The solid line 

conresponds to the "true" mean concentration obtained from 5 x 106 independent particle trajectories using a 

box-counting method. The effects of the ground surface on the kernel density estimate were not included in this 

simulation. 
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Figure 7: Simulation results showing streamwise (x-wise) cross-sections of the normalized mean concentration 

C/Q obtained at iy,z) = (1 m. 3 m) for an instantaneous point source release atx = y = 0 and z = 1 m. The mean 

concentration is obtained at 6 different times after the tracer was released from the point source; namely, at (a) 

t = 10, (b) t = 20, (c) t = 30, (d) t = 40, (e) t = 50, and (f) t = 60 seconds. The normalized concentration estimates 

were obtained from 50,000 independent particle trajectories using the fast kernel estimator with parabolic (dotted 

line) and quadweight (dashed line) kernel functions with a constant bandwidth h = 2m. The solid line corresponds 

to the "true" mean concentration obtained from 5 x 106 independent particle trajectories using a box-counting 

method. The effects of the ground surface on the kernel density estimate were not included in this simulation. 
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Figure 8: Simulation results showing streamwise (x-wise) cross-sections of the normalized wean concentration 

C/Q obtained at(y,z) = (\m,lm) for an instantaneous point source release atx = y = 0 and z=\ m. The mean 

concentration is obtained at 6 different times after the tracer was released from the point source; namely, at (a) 

t = 10, (b)t = 20, (c) t — 30, (d) t = 40, (e) t = 50, and (f) t = 60 seconds. The normalized concentration estimates 

were obtained from 50,000 independent particle trajectories using the fast kernel density estimator with parabolic 

(dotted line) and quadweight (dashed line) kernel functions with a constant bandwidth h = 2m. The solid line 

corresponds to the "true" mean concentration obtained from 5 x 106 independent particle trajectories using a 

box-counting method. The effects of the ground surface on the kernel density estimate were included in this 

simulation. 
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Figure 9: Simulation results showing streamwise (x-wise) cross-sections of the normalized mean concentration 

C/Q obtained at (y,z) = (1 m,3 m) for an instantaneous point source release at x = y = 0 and z = 1 m. The mean 

concentration is obtained at 6 different times after the tracer was released from the point source; namely, at (a) 

t = 10, (b) t = 20, (c) t = 30, (d) t = 40, (e) t = 50, and (f) t = 60 seconds. The normalized concentration estimates 

were obtained from 20,000 independent particle trajectories using the fast kernel density estimator with parabolic 

(dotted line) and quadweight (dashed line) kernel functions with a constant bandwidth h = 2m. The solid line 

con~esponds to the true" mean concentration obtained from 5 x 106 independent particle trajectories using a 

box-counting method. 
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Figure 10: Simulation results showing streamwise (x-wise) cross-sections of the normalized mean concentration 

C/Q obtained at (y.z) = (l m,3 m) for an instantaneous point source release atx = y = 0 and z= l m. The mean 

concentration is obtained at 6 different times after the tracer was released from the point source; namely, at (a) 

t = 10, (b) t = 20, (c) t = 30, (d) t = 40, (e) t = 50, and (f) t = 60 seconds. The normalized concentration estimates 

were obtained from 10,000 independent particle trajectories using the fast kernel density estimator with a 

quadweight (dashed line) kernel function with a constant bandwidth h = 6m. The solid line corresponds to the "true" 

mean concentration obtained from 5 x 106 independent particle trajectories using a box-counting method. 
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